Application Guidelines for ZB*KCE and legacy ZB*KC
Copeland Scroll™ Refrigeration Compressors 7 to 15 HP

TABLE OF CONTENTS

Safety .. 3
Safety Instructions .. 3
Safety Icon Explanation 3
Instructions Pertaining to Risk of Electrical Shock, Fire, or Injury to Persons 4
Safety Statements .. 4
1. Introduction .. 5
2. Nomenclature .. 5
3. Operating Envelope 5
3.1. Voltage / Frequency Restrictions 5
4. 7.5 to 15 HP Digital Scroll Restrictions 5
5. Compressor Lubrication 5
6. Accumulators ... 5
7. Screens .. 5
8. Superheat Requirements 6
9. Crankcase Heater 6
10. Advanced Scroll Temperature Protection (ASTP) .. 6
11. Discharge Line Thermostat 6
12. Pressure Controls 6
13. IPR Valve ... 7
14. Motor Protection 7
14.1. Legacy Kriwan Protection Modules 7
14.1.1. Programmable Logic Controller Requirements with Kriwan 7
14.1.2. Kriwan Module and Sensor Functional Check ... 7
14.2. Sensor Troubleshooting 8
15. Compressor Voltage Supply Troubleshooting ... 8
16. Oil Type ... 8
17. Oil Management for Single Compressor Applications ... 8
18. Oil Management for Rack Applications 9
19. Compressor Mounting 9
20. Connection Fittings 9
21. Three Phase Scroll Compressors - Directional Dependence 9
22. Deep Vacuum Operation 10
23. Unbrazing System Components 10
24. High Potential (Hipot) Testing 10
25. General Guidelines and More Information .. 10

APPENDIXES

Appendix A: Kriwan to CoreSense™ Communications Retrofit Instructions for ZB95-114KC, ZR160-190KC & ZP154-182K Compressors

TABLE OF FIGURES

Figure 1 - ZB-KCE (excluding ZB95KCE & ZB114KCE) Application Envelope for R404A/R507 MT 11
Figure 2 - ZB95KCE & ZB114KCE Application Envelope for R404A/R507 MT 11
Figure 3 - ZB95KCE & ZB114KCE Application Envelope for R404A/R507 HT 11
Figure 4 - ZB-KC (excluding ZB95KC & ZB114KC) Application Envelope for R22 HT 11
Figure 5 - ZB95KC and ZB114KC Application Envelope for R22 HT 11
Figure 6 - ZB-KCE Application Envelope for R134A HT .. 11
Figure 7 - Changes in the Suction Braze Fittings of ZB*KCE models 12
Figure 8 - Change in the Terminal Cover of Z*KCE-TF* models ... 12
Figure 9 - Advanced Scroll Temperature Protection Label .. 13
Figure 10 - Scroll Wiring Schematic 13
Figure 11 – 7.5 – 15 HP Rack Mounting 14
Figure 12 - Holding Tabs Position 18
Figure 13 - Dipswitch Setting 19
Figure 14 - CoreSense Position 19

© 2019 Emerson
TABLES

Table 1 - Refrigerant Options ... 14
Table 2 - Charge Limits ... 14
Table 3 - Crankcase Heaters .. 14
Table 4 - Conduit Ready Heater Box Kits 14
Table 5 - Pressure Control Settings ... 15
Table 6 - Motor Protection .. 15
Table 7 - Technical Data Summary ... 16
Table 8 - Compressor Oil Charge .. 17
Table 9 - Connection Fittings ... 17

Revision Tracking R12
(August 2019)
Pg. 5 – Reference added to MB2019CC-12 marketing bulletin and note about ZB*KC compressor models phased out.
Pg. 6 – Differential °C units references changed to K (Kelvin).
Pg. 7 – Section 14 (Motor Protection): References to Kriwan changed to Legacy Kriwan Module.
Pgs. 18-19 – Figure 12 and Figure 14 aligned to real vertical position.

Revision Tracking R11
(March 2019)
Pg. 9 – Section 18, Oil Management for Rack Applications: References to OMB updated to OMB/C Oil Management Control. Links and QR codes to OMB/C instructions sheets added.
Pg. 14 – Table 1, Refrigerant Options: models listed updated.
Pg. 14 – Table 2, Charge Limits: Charge limits updated.

Revision Tracking R10
(December 2018)
Pg. 6 – QR code was added. This is a link for video about ASTP.
Pg. 11 – Operation envelopes figures with better resolution.
Pg. 13 – QR code about ASTP added on Figure 9.
Safety Instructions

Copeland Scroll™ compressors are manufactured according to the latest U.S. and European Safety Standards. Particular emphasis has been placed on the user's safety. Safety icons are explained below and safety instructions applicable to the products in this bulletin are grouped on Page 4. These instructions should be retained throughout the lifetime of the compressor. You are strongly advised to follow these safety instructions.

Safety Icon Explanation

- **DANGER** indicates a hazardous situation which, if not avoided, will result in death or serious injury.

- **WARNING** indicates a hazardous situation which, if not avoided, could result in death or serious injury.

- **CAUTION**, used with the safety alert symbol, indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

- **NOTICE** is used to address practices not related to personal injury.

- **CAUTION**, without the safety alert symbol, is used to address practices not related to personal injury.

- **FLAMMABLE**, Fire hazard! Sparking in a potentially explosive atmosphere! Explosion hazard!
Instructions Pertaining to Risk of Electrical Shock, Fire, or Injury to Persons

ELECTRICAL SHOCK HAZARD

WARNING
- Disconnect and lock out power before servicing.
- Discharge all capacitors before servicing.
- Use compressor with grounded system only.
- Molded electrical plug must be used when required.
- Refer to original equipment wiring diagrams.
- Electrical connections must be made by qualified electrical personnel.
- Failure to follow these warnings could result in serious personal injury.

PRESSURIZED SYSTEM HAZARD

WARNING
- System contains refrigerant and oil under pressure.
- Remove refrigerant from both the high and low compressor side before removing compressor.
- Never install a system and leave it unattended when it has no charge, a holding charge, or with the service valves closed without electrically locking out the system.
- Use only approved refrigerants and refrigeration oils.
- Personal safety equipment must be used.
- Failure to follow these warnings could result in serious personal injury.

BURN HAZARD

WARNING
- Do not touch the compressor until it has cooled down.
- Ensure that materials and wiring do not touch high temperature areas of the compressor.
- Use caution when brazing system components.
- Personal safety equipment must be used.
- Failure to follow these warnings could result in serious personal injury or property damage.

COMPRESSOR HANDLING

CAUTION
- Use the appropriate lifting devices to move compressors.
- Personal safety equipment must be used.
- Failure to follow these warnings could result in personal injury or property damage.

Safety Statements

- Refrigerant compressors must be employed only for their intended use.
- Only qualified and authorized HVAC or refrigeration personnel are permitted to install commission and maintain this equipment.
- Electrical connections must be made by qualified electrical personnel.
- All valid standards and codes for installing, servicing, and maintaining electrical and refrigeration equipment must be observed.
1. Introduction

The Copeland Scroll™ ZB*KCE refrigeration compressor models offering includes higher horsepower models. These models include 7-15 Hp and produce between 50,000 Btu/H and 114,000 Btu/H at 20/120°F using 60 Hz electrical power. This bulletin covers the application parameters recommended for operating these compressors properly.

ZB*KC refrigeration compressor models will be completely phased out by March 2020. See MB2019CC-12 marketing bulletin and contact your Application Engineer for more details about replacement models and BOMs availability.

NOTICE

Since January 2020 some changes will be applied on Suction Braze Fittings of ZB*KCE models. See Figure 7 and Marketing Bulletin MB2019CC-12 for more details.

Additionally, some changes in the terminal cover of Z*KCE-TF* models will be applied since January 2020. See Figure 8 and Marketing Bulletin MB2019CC-12 for more details.

MB2019CC-12 will be available by October 2019.

2. Nomenclature

The ZB*KCE and legacy ZB*KC refrigeration scroll model number includes two digits that indicate the amount of cooling capacity in thousands of Btu/H at the 60 Hz ARI rating point (20/120°F) with R-404A in the third and fourth location. (e.g. ZB92KC produces approximately 92,000 Btu/H). For actual compressor performance information please visit Emerson Climate Technologies Online Product Information at Emerson.com/OPI.

3. Operating Envelope

The Copeland Scroll refrigeration models can be used with a variety of refrigerants. Table 1 at the end of this bulletin shows these selection options.

The operating envelopes are depicted in Figure 1, Figure 2, Figure 3, Figure 4, Figure 5 and Figure 6 at the end of this bulletin.

3.1. Voltage / Frequency Restrictions

Due to inadequate cooling from refrigerant flow through the compressor, the following 50 Hz applications are not approved:

ZB95KC / ZB95KCE / ZB114KC / ZB114KCE-TWD/TED 420 V 50 Hz

4. 7.5 to 15 HP Digital Scroll Restrictions

NOTICE

When operating the 7.5 to 15 HP digital scroll compressors (ZBD**KC, ZRD**KC, ZPD**KC) with R-410A or R-407C in a refrigeration application (i.e. air dryer/process chillers), Emerson recommends limiting the digital unloading at 30% to provide adequate motor cooling within the entire operating envelope of the compressors listed. 20% and even 10% digital loads can be maintained on all models if adequate return gas volume and temperature are available to provide adequate motor cooling to the compressor to prevent nuisance trips on the motors thermal protection circuit. System testing may be required to determine the digital limitation in various applications.

5. Compressor Lubrication

The compressors can be used with different lubricants depending upon the refrigerant used. See Form 93-11 for a complete list of all Emerson approved lubricants.

6. Accumulators

Due to the inherent ability of scroll compressors to handle liquid refrigerant in flooded start and defrost cycle operation conditions, accumulators may not be required. An accumulator is required on single compressor systems when the charge limitations exceed those values listed in Table 2. On systems with defrost schemes or transient operations that allow prolonged uncontrolled liquid return to the compressor, an accumulator is required unless a suction header of sufficient volume to prevent liquid migration to the compressors is used. Excessive liquid floodback or repeated flooded starts will dilute the oil in the compressor causing inadequate lubrication and bearing wear. Proper system design will minimize liquid floodback, thereby ensuring maximum compressor life. If an accumulator must be used, an oil return orifice size in the range of 0.040 - 0.075 inches (1 - 1.9 mm) is recommended. A large-area protective screen no finer than 30 x 30 mesh (0.6 mm openings) is required to protect this small orifice from plugging with system debris. Tests have shown that a small screen with a fine mesh can easily become plugged causing oil starvation to the compressor bearings.

7. Screens

The use of screens finer than 30 x 30 mesh (0.6 mm openings) anywhere in the system is not recommended. Field experience has shown that finer mesh screens
used to protect thermal expansion valves, capillary tubes, or accumulators can become temporarily or permanently plugged with normal system debris and block the flow of either oil or refrigerant to the compressor. Such blockage can result in compressor failure.

8. Superheat Requirements

In order to assure that liquid refrigerant does not return to the compressor during the running cycle, attention must be given to maintaining proper superheat at the compressor suction inlet. Emerson recommends a minimum of 20°F (11K) superheat, measured on the suction line 6 inches (152mm) from the suction valve, to prevent liquid refrigerant floodback. Another method to determine if liquid refrigerant is returning to the compressor is to accurately measure the temperature difference between the compressor oil crankcase and the suction line. During continuous operation we recommend that this difference be a minimum of 50°F (27K). This "crankcase differential temperature" requirement supersedes the minimum suction superheat requirement in the last paragraph. To measure oil temperature through the compressor shell, place a thermocouple on the bottom center (not the side) of the compressor shell and insulate from the ambient.

During rapid system changes, such as defrost or ice harvest cycles, this temperature difference may drop rapidly for a short period of time. When the crankcase temperature difference falls below the recommended 50°F (27K), our recommendation is the duration should not exceed a maximum (continuous) time period of two minutes and should not go lower than a 25°F (14K) difference.

Contact your Emerson Application Engineer regarding any exceptions to the above requirements.

9. Crankcase Heater

Crankcase heaters are required on systems when the system charge exceeds the recommended charge limit. See Table 2.

The listed crankcase heaters (Table 3) are intended for use only when there is limited access. The heaters are not equipped for use with electrical conduit. Where applicable, electric safety codes require heater lead protection, a crankcase heater terminal box should be used. Recommended crankcase heater terminal cover and box numbers are listed in Table 4. If there are any questions concerning the application, contact the Emerson Climate Technologies Application Engineering department.

10. Advanced Scroll Temperature Protection (ASTP)

After extensive research and trials Emerson Climate Technologies found a way to install a Therm-O-Disc™ temperature sensitive snap disc in the ZB50, ZB58, ZB66, ZB76, ZB95, ZB88 and ZB114 scroll compressors. This acts to protect the compressor from discharge gas overheating. Events such as loss of charge, evaporator blower failure, or low side charging with inadequate pressure will cause the discharge gas to quickly rise above a critical temperature. Once this critical temperature is reached, the ASTP feature will cause the scrolls to separate and stop pumping but allow the motor to continue to run. After the compressor runs for some time without pumping gas, the motor protector will open. Depending on the heat build up in the compressor, it may take up to two hours for the ASTP to reset. The addition of the Advanced Scroll Temperature Protection makes it possible to eliminate the discharge line thermostat previously required. A graphic explanation and a short video clip are available on the QR code below. Compressors with this feature will have the Advanced Scroll Temperature Protection label (Figure 9) located directly above the terminal box.

11. Discharge Line Thermostat

The addition of Advanced Scroll Temperature Protection on the ZB50, ZB58, ZB66, ZB76, ZB88, ZB95 and ZB114, as well as the internal discharge temperature protection described in the section titled "Motor Protection" for the ZB56, ZB68, ZB75, ZB92, and ZB11M, makes it possible to eliminate the discharge line thermostat in most applications.

12. Pressure Controls

Both high and low pressure controls are required and the following are the minimum and maximum set points. Refer to Table 5 for proper settings.
13. IPR Valve
The 7 through 15 horsepower refrigeration scroll compressors DO NOT have an internal high pressure relief valve. To provide safe operation, a high pressure control set no higher than 445 psig must be used in all applications (reference Table 5).

14. Motor Protection
The larger horsepower refrigeration scroll compressors have either line break protection or the use of sensors with an electronic module. The type of protection is obtained from the protector code in the model number. Table 6 lists the various models protector number and the type of protection.

NOTICE
Note: The legacy ZB95KC and the ZB114KC compressors were upgraded to CoreSense™ Communications modules starting in April of 2014. The Electrical codes went from TW* to TE*. Please refer to CoreSense Communications bulletin AE-1384 for details on the corresponding module.

Those legacy ZB95KC and the ZB114KC compressor models used a Kriwan protection module, which are described in the subsection below. See Appendix A for Kriwan to CoreSense™ Communications Retrofit Instructions

14.1. Legacy Kriwan Protection Modules
For the INT69SCY, there are five PTC (positive temperature coefficient) internal thermisters connected in series that react with avalanche resistance in the event of high temperatures. Four of the thermisters are used to sense motor temperatures and the fifth is used as a discharge temperature sensor.

For the INT69SU, there are four PTC (positive temperature coefficient) internal thermisters connected in series. All four are used to sense motor temperature. The thermister circuit is connected to the protector module terminals S1 and S2.

When any thermister reaches a limiting value, the module interrupts the control circuit and shuts off the compressor. After the thermister has cooled sufficiently, the resistance will decrease, thus allowing the module to reset. However, the module has a 30-minute time delay before reset after a thermister trip.

For all other compressors, conventional internal line break motor protection is provided.

14.1.1. Programmable Logic Controller Requirements with Kriwan
If the INT69SCY (071-0620-00) or INT69SU (071-0641-00) module is applied in conjunction with a Programmable Logic Controller, it is important that a minimum load is carried through the M1-M2 control circuit contacts.

The minimum required current through the module relay contacts needs to be greater than 100 milliamps but not to exceed 5 amps. If this minimum current is not maintained, this has a detrimental effect upon the long-term contact resistance of the relay and may result in false compressor trips.

PLC operated control circuits may not always provide this minimum current. In these cases, modifications to the PLC control circuit are required. Consult your application engineering department for details.

Phase Protection
The INT69SCY module provides phase protection for the compressor. The module senses the correct phase sequence, phase loss and voltage sag for each leg (L1, L2 and L3) of the incoming power supplied to the compressor. At installation the three phases of the power supply must be wired in the correct 120° phase sequence. This will ensure the compressor will start and operate in the correct clockwise direction.

The INT69SCY module trips (M1-M2 contacts open) when the module senses a phase loss. There is a 5 minute time delay before the module attempts a restart. If all three phases are present, then the module will reset (M1-M2 contacts will close) and the compressor will start and run. If not, the module will attempt a restart after another 5 minute time delay. After 10 failed attempts to restart, the module will lock-out (M1-M2 contacts will remain open) and can only be reset by removing the power from T1-T2 for a minimum of 5 seconds.

The INT69SCY is intended to protect the compressor. The L1/L2/L3 and S1/S2 leads are pre-wired on the compressor and are engineered to work in conjunction with the motor protector module. The module leads should not be moved or extended because of the possibility of inducing electronic noise into the INT69SCY, which could cause false trips of the module.

14.1.2. Kriwan Module and Sensor Functional Check
The following field troubleshooting procedure can be used to evaluate the solid state control circuit: Refer to Table 7 for a technical data summary.
Module Voltage Supply Troubleshooting

- Verify that all wire connectors are maintaining a good mechanical connection. Replace any connectors that are loose.
- Measure the voltage across T1-T2 to ensure proper supply voltage.
- Determine the control voltage by using a voltmeter and then measure the voltage across the M1-M2 contacts:
 a. If the measured voltage is equal to the control volts then the M1-M2 contacts are open.
 b. If the measurement is less than 1 volt and the compressor is not running, then the problem is external to the INT69SCY or INT69SU module.
 c. If the voltage is greater than 1 volt but less than the control voltage, the module is faulty and should be replaced.

14.2. Sensor Troubleshooting

- Remove the leads from S1-S2, and then by using an ohmmeter measure the resistance of the incoming leads.

CAUTION

Use an Ohmmeter with a maximum of 9 VDC for checking - do not attempt to check continuity through the sensors with any other type of instrument. Any external voltage or current may cause damage requiring compressor replacement.

- a. During normal operation, this resistance value should read less than 4500 ohms ±20%.
- b. If the M1-M2 contacts are open, the measured S1-S2 value is above 2750 ohms ±20% and the compressor has been tripped less than 30 minutes then the module is functioning properly.
- c. If the S1-S2 wire leads read less than 2750 ohms ±20% and the M1-M2 contacts are open, reset the module by removing the power to T1-T2 for a minimum of 5 seconds.
- d. Replace all wire leads and use a voltmeter to verify the M1-M2 contacts are closed.
- e. If the M1-M2 contacts remain open and S1-S2 are less than 2500 ohms, remove leads from the M1-M2 contacts and jumper together;

CAUTION

Compressor should start at this time. HOWEVER, DO NOT LEAVE JUMPER IN PLACE FOR NORMAL SYSTEM OPERATIONS. THE JUMPER IS USED FOR DIAGNOSTIC PURPOSES ONLY.

- Go to Compressor Voltage Supply Troubleshooting Section.

15. Compressor Voltage Supply Troubleshooting

- Remove phase sensing leads from the module from L1/L2/L3.
- Use a voltmeter to measure the incoming 3 phase voltage on L1/L2/L3. WARNING: L1/L2/L3 could be at a potential up to 600VAC.
- Ensure proper voltage on each phase.
- Remove power to the module for a minimum of 5 seconds to reset and replace all wire leads. Re-energize the module. If the M1-M2 contacts are open with proper voltage to T1-T2, L1/L2/L3 and proper resistance to S1-S2 then the module is faulty and should be replaced.

WARNING

POE may cause an allergic skin reaction and must be handled carefully and the proper protective equipment (gloves, eye protection, etc.) must be used when handling POE lubricant. POE must not come into contact with any surface or material that might be harmed by POE, including without limitation, certain polymers (e.g. PVC/CPVC and polycarbonate). Refer to the Safety Data Sheet (SDS) for further details.

16. Oil Type

Polyol ester lubricant (POE) must be provided if the refrigeration scroll is used with HFC refrigerants. Reference Table 8 for proper oil charge. See Form 93-11 for a complete list of all Emerson approved lubricants.

17. Oil Management for Single Compressor Applications

If the oil level is above the sight glass, oil circulation rates greater than 1.5% may be experienced with the ZB50, ZB58, ZB66, ZB76, ZB88, ZB95 & ZB114 compressors. This is especially true in the larger compressors in 60 Hz applications.
18. Oil Management for Rack Applications

Copeland Scroll refrigeration compressors may be used on multiple compressor parallel rack applications. This requires the use of an oil management system to maintain proper oil level in each compressor crankcase. The sight glass connection supplied can accommodate the mounting of the oil control devices.

Unlike Semi-Hermetic compressors, the scrolls do not have an oil pump with accompanying oil pressure safety controls. Therefore, an external oil level control is required.

The OMB/C Oil Level Management Control combines the functions of level control and timed compressor shut-off should the level not come back to normal within a set period of time. This device has been found to provide excellent performance in field tests on Scroll compressors and is recommended for parallel system applications.

Note: The Emerson Climate Technologies Application Engineering Department should be contacted for approved oil management systems.

Immediately after system start-up the oil reservoir level will fluctuate until equilibrium is reached. It is advisable to monitor the oil level during this time to assure sufficient oil is available. This will prevent unnecessary trips of the oil control system.

Note: If oil management problems are occurring please refer to AE-1320 or contact the Emerson Climate Technologies Application Engineering Department.

For Technical details about OMB/C Oil Level Management Control follow these links or scan their QR code:

- Instruction Sheet

- Installation Instruction Sheet

Note: ZB50, 58, 66, 76, 88, 95, 114 are not approved for rack applications due to compressor limitations.

19. Compressor Mounting

NOTICE

Compressor mounting must be selected based on application. Consideration must be given to sound reduction tubing reliability. Some tubing geometry or "shock loops" may be required to reduce vibration transferred from the compressor to external tubing.

19.1. Mounting for Rack Systems

Specially designed steel spacers and rubber isolator pads are available for our refrigeration scroll 7.5-15 HP scroll rack applications. This mounting arrangement limits the compressors motion thereby minimizing potential problems of excessive tubing stress. Sufficient isolation is provided to prevent vibration from being transmitted to the mounting structure. This mounting arrangement is recommended for multiple compressor rack installations. See Figure 11 for a detail for this mounting system.

CAUTION

The use of standard soft grommets is not recommended for our refrigeration scroll rack installations. These "softer" mounts allow for excessive movement that will result in tube breakage unless the entire system is properly designed.

20. Connection Fittings

There are various connection fittings available for Copeland Scroll refrigeration compressors. The various options are shown in Table 9.

21. Three Phase Scroll Compressors - Directional Dependence

Scroll compressors are directional dependent; i.e. they will compress in one rotational direction only. Three phase Scrolls will rotate in either direction depending on power phasing. Since there is a 50/50 chance of connected power being “backwards”, contractors should
be warned of this. Appropriate instructions or notices should be provided by the OEM. To eliminate the possibility of reverse rotation a Copeland Phase Control line monitor, P/N 085-0160-00, or other phase monitor is recommended.

Verification of proper rotation can be made by observing that the suction pressure drops, and the discharge pressure rises when the compressor is energized. Additionally, if operated in reverse the compressor is noisier and its current draw is substantially reduced compared to tabulated values.

No time delay is required on three phase models to prevent reverse rotation due to brief power interruptions.

22. Deep Vacuum Operation

WARNING

Do not run a Copeland Scroll refrigeration compressor in a deep vacuum. Failure to heed this advice can result in arcing of the Fusite pins and permanent damage to the compressor.

A low pressure control is required for protection against deep vacuum operation. See Pressure Control section for proper set points.

Scroll compressors (as with any refrigerant compressor) should never be used to evacuate a refrigeration or air conditioning system. See **AE24-1105** for proper system evacuation procedures.

23. Unbrazing System Components

CAUTION

If the refrigerant charge is removed from a scroll unit by bleeding the high side only, it is sometimes possible for the scrolls to seal, preventing pressure equalization through the compressor. This may leave the low side shell and suction line tubing pressurized. If a brazing torch is then applied to the low side, the pressurized refrigerant and oil mixture could ignite as it escapes and contacts the brazing flame. It is important to check both the high and low sides with manifold gauges before unbrazing or in the case of assembly line repair, remove refrigerant from both the high and low sides. Instructions should be provided in appropriate product literature and assembly (line repair) areas.

24. High Potential (Hipot) Testing

Many of the Copeland brand compressors are configured with the motor below the compressor. As a result, when liquid refrigerant is within the compressor shell the motor can be immersed in liquid refrigerant to a greater extent than with compressors with the motor mounted above the compressor. When Copeland brand compressors are Hipot tested and liquid refrigerant is in the shell, they can show higher levels of leakage current than compressors with the motor on top because of the higher electrical conductivity of liquid refrigerant than refrigerant vapor and oil. This phenomenon can occur with any compressor when the motor is immersed in refrigerant. The level of current leakage does not present any safety issue. To lower the current leakage reading the system should be operated for a brief period of time to redistribute the refrigerant to a more normal configuration and the system Hipot tested again. See bulletin **AE4-1294** for Megohm testing recommendations. Under no circumstances should the Hipot or Megohm test be performed while the compressor is under a vacuum.

NOTICE

The solid state electronic module components and internal sensors are delicate and can be damaged by exposure to high voltage. Under no circumstances should a high potential test be made at the sensor terminals or sensor leads connected to the module. Damage to the sensors or module may result.

25. General Guidelines and More Information

For general Copeland Scroll compressor please log in to Online Product Information at Emerson.com/OPI, refer to the Application Engineering bulletins listed below, or contact your Application Engineer.

<table>
<thead>
<tr>
<th>Form 93-11</th>
<th>Refrigerants and lubricants approved for use in Copeland™ compressors</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE8-1384</td>
<td>CoreSense™ Communications for 20 to 40 Ton Copeland Scroll™ Air Conditioning Compressors</td>
</tr>
<tr>
<td>AE17-1320</td>
<td>Oil Management for Copeland Scroll™ Compressors in Parallel Applications</td>
</tr>
<tr>
<td>AE24-1105</td>
<td>Principles of Cleaning Refrigeration Systems</td>
</tr>
<tr>
<td>AE4-1294</td>
<td>Megohm Values of Copeland® Compressors</td>
</tr>
</tbody>
</table>
Figure 1 - ZB-KCE (excluding ZB95KCE & ZB114KCE) Application Envelope for R404A/R507 MT Applications 7-15Hp

Figure 2 - ZB95KCE & ZB114KCE Application Envelope for R404A/R507 MT Applications 7-15Hp

Figure 3 - ZB95KCE & ZB114KCE Application Envelope for R404A/R507 HT Applications 7-15Hp

Figure 4 - ZB-KC (excluding ZB95KC & ZB114KC) Application Envelope for R22 HT Applications 7-15Hp

Figure 5 - ZB95KC and ZB114KC Application Envelope for R22 HT Applications 7-15Hp

Figure 6 - ZB-KCE Application Envelope for R134A HT Applications 7-15Hp
Figure 7 - Changes in the Suction Braze Fittings of ZB*KCE models

Figure 8 - Change in the Terminal Cover of Z*KCE-TF* models
Figure 9 - Advanced Scroll Temperature Protection Label

Figure 10 - Scroll Wiring Schematic
Figure 11 – 7.5 – 15 HP Rack Mounting

Table 1 - Refrigerant Options

<table>
<thead>
<tr>
<th>Model</th>
<th>Refrigerant</th>
<th>Lubricant</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZB50KCE</td>
<td>R22/407/R404A/507/134a</td>
<td>POE</td>
</tr>
<tr>
<td>ZB58KCE</td>
<td>R22/407/R404A/507/134a</td>
<td>POE</td>
</tr>
<tr>
<td>ZB66KCE</td>
<td>R22/407/R404A/507/134a</td>
<td>POE</td>
</tr>
<tr>
<td>ZB76KCE</td>
<td>R22/407/R404A/507/134a</td>
<td>POE</td>
</tr>
<tr>
<td>ZB88KCE</td>
<td>R22/407/R404A/507/134a</td>
<td>POE</td>
</tr>
<tr>
<td>ZB95KCE</td>
<td>R22/407/R404A/507/134a</td>
<td>POE</td>
</tr>
<tr>
<td>ZB114KCE</td>
<td>R22/407/R404A/507/134a</td>
<td>POE</td>
</tr>
<tr>
<td>ZB56KCE</td>
<td>R22/407/R404A/507/134a</td>
<td>POE</td>
</tr>
<tr>
<td>ZB68KCE</td>
<td>R22/407/R404A/507/134a</td>
<td>POE</td>
</tr>
<tr>
<td>ZB75KCE</td>
<td>R22/407/R404A/507/134a</td>
<td>POE</td>
</tr>
<tr>
<td>ZB92KCE</td>
<td>R22/407/R404A/507/134a</td>
<td>POE</td>
</tr>
<tr>
<td>ZB11MCE</td>
<td>R22/407/R404A/507/134a</td>
<td>POE</td>
</tr>
</tbody>
</table>

Table 2 - Charge Limits

<table>
<thead>
<tr>
<th>Model Family</th>
<th>Charge Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZB50, 58, 66, 76, 88, 95, 114 KC/E</td>
<td>16 lbs</td>
</tr>
<tr>
<td>ZB56, 68, 75, 92KC/E & ZB11MC/E</td>
<td>17 lbs</td>
</tr>
</tbody>
</table>

Table 3 - Crankcase Heaters

<table>
<thead>
<tr>
<th>Model</th>
<th>Part. No</th>
<th>Volts</th>
<th>Watts</th>
<th>Leads</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZB50, ZB58, ZB66, ZB76, ZB88, ZB95, ZB114</td>
<td>018-0067-00</td>
<td>120</td>
<td>90</td>
<td>48"</td>
</tr>
<tr>
<td></td>
<td>018-0067-01</td>
<td>240</td>
<td>90</td>
<td>48"</td>
</tr>
<tr>
<td></td>
<td>018-0067-02</td>
<td>480</td>
<td>90</td>
<td>48"</td>
</tr>
<tr>
<td></td>
<td>018-0067-03</td>
<td>575</td>
<td>90</td>
<td>48"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Part. No</th>
<th>Volts</th>
<th>Watts</th>
<th>Leads</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZB56, ZB68, ZB75, ZB92, ZB11M</td>
<td>018-0077-00</td>
<td>240</td>
<td>70</td>
<td>26"</td>
</tr>
<tr>
<td></td>
<td>018-0077-01</td>
<td>120</td>
<td>70</td>
<td>26"</td>
</tr>
<tr>
<td></td>
<td>018-0077-02</td>
<td>480</td>
<td>70</td>
<td>26"</td>
</tr>
<tr>
<td></td>
<td>018-0077-03</td>
<td>575</td>
<td>70</td>
<td>26"</td>
</tr>
<tr>
<td></td>
<td>018-0077-04</td>
<td>240</td>
<td>70</td>
<td>34"</td>
</tr>
<tr>
<td></td>
<td>018-0077-05</td>
<td>480</td>
<td>70</td>
<td>34"</td>
</tr>
<tr>
<td></td>
<td>018-0077-06</td>
<td>575</td>
<td>70</td>
<td>34"</td>
</tr>
</tbody>
</table>

Table 4 - Conduit Ready Heater Box Kits

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Kit Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZB50, ZB58, ZB66, ZB76, ZB88, ZB95, ZB114</td>
<td>998-7029-00</td>
</tr>
<tr>
<td>ZB56, ZB68, ZB75, ZB92, ZB11M</td>
<td>998-7015-00</td>
</tr>
</tbody>
</table>
Table 5 - Pressure Control Settings

<table>
<thead>
<tr>
<th>Model</th>
<th>Control Type</th>
<th>R404A/R507</th>
<th>R134a</th>
<th>R22</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZB50, ZB58, ZB66, ZB76, ZB95, ZB114</td>
<td>Low</td>
<td>17 psig min. 454 psig max.</td>
<td>4 psig min. 263 psig max</td>
<td>37 psig min. 381 psig max</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZB88</td>
<td>Low</td>
<td>N/A</td>
<td>N/A</td>
<td>37 psig min. 381 psig max</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZB56, ZB75, ZB68, ZB92, ZB11M</td>
<td>Low</td>
<td>17 psig min. 454 psig max.</td>
<td>4 psig min. 263 psig max</td>
<td>37 psig min. 381 psig max</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6 - Motor Protection

Models with Line Break Protection ZB50, ZB58, ZB66, ZB76, ZB88, ZB95, ZB114 (note: electric code = TF*)	No module
Models with Electronic Module ZB56, ZB68, ZB75, ZB92, ZB11M (note: electric code = TW*)	Kit # 971-0547-01 Model: INT69SCY
Models with Electronic Module ZB95, ZB114 (note: electric code = TW*)	Kit # 971-0641-00 Model: INT69SU
Models with 24 volt CoreSense Communications Module ZB95, ZB114 with TE* Electrical code	Kit # 971-0065-04
Models with 120/240 volt CoreSense Communications Module ZB95, ZB114 with TE* Electrical code	Kit # 971-0064-05
Table 7 - Technical Data Summary

<table>
<thead>
<tr>
<th>Emerson P/N</th>
<th>071-0520-07</th>
<th>071-0520-05</th>
<th>071-0620-00</th>
<th>071-0641-00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer P/N</td>
<td>T.I. 30AA201E</td>
<td>Kriwan 69SC-DV</td>
<td>Kriwan 69SCY</td>
<td>Kriwan 69SU</td>
</tr>
<tr>
<td>T1-T2 Module Power</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage Supply</td>
<td>120V & 240V</td>
<td>120V & 240V</td>
<td>120V & 240V</td>
<td>120V & 240V</td>
</tr>
<tr>
<td>Frequency</td>
<td>50Hz & 60Hz</td>
<td>50Hz & 60Hz</td>
<td>50Hz & 60Hz</td>
<td>50Hz & 60Hz</td>
</tr>
<tr>
<td>M1-M2 Module Output Contacts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Voltage</td>
<td>N/A</td>
<td>250VAC</td>
<td>250VAC</td>
<td>250VAC</td>
</tr>
<tr>
<td>Maximum Current</td>
<td>5 Amps</td>
<td>5 Amps</td>
<td>5 Amps</td>
<td>5 Amps</td>
</tr>
<tr>
<td>Minimum Current</td>
<td>100 milliamps</td>
<td>100 milliamps</td>
<td>100 milliamps</td>
<td>100 milliamps</td>
</tr>
<tr>
<td>Relay Output</td>
<td>2.5 A, 600 V</td>
<td>5 A, 300 VA</td>
<td>5 A, 300 VA</td>
<td>5 A, 300 VA</td>
</tr>
<tr>
<td>Power Output</td>
<td>< 5.5 VA</td>
<td><3 VA</td>
<td><3 VA</td>
<td><3 VA</td>
</tr>
<tr>
<td>S1-S2 Thermal Protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trip Out Resistance</td>
<td>N/A</td>
<td>4500W ± 20%</td>
<td>4500W ± 20%</td>
<td>4500W ± 20%</td>
</tr>
<tr>
<td>Reset Resistance</td>
<td>N/A</td>
<td>2750W ± 20%</td>
<td>2750W ± 20%</td>
<td>2750W ± 20%</td>
</tr>
<tr>
<td>Reset Time</td>
<td>30 min ± 5 min</td>
</tr>
<tr>
<td>Manual Reset</td>
<td>T1-T2 interrupt for minimum of 5 sec</td>
</tr>
<tr>
<td>L1-L2-L3 Phase Monitoring</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase Sensor</td>
<td>Non Phase Sensing</td>
<td>Non Phase Sensing</td>
<td>Non Phase Sensing</td>
<td>Non Phase Sensing</td>
</tr>
<tr>
<td>Phase Monitoring Circuit Rating</td>
<td>Non Phase Sensing</td>
<td>Non Phase Sensing</td>
<td>3 AC 50/60Hz 120V to 632V</td>
<td>Non Phase Sensing</td>
</tr>
<tr>
<td>Trip Delay</td>
<td>Non Phase Sensing</td>
<td>Non Phase Sensing</td>
<td>5 min delay before restart attempt</td>
<td>Non Phase Sensing</td>
</tr>
<tr>
<td>Lockout</td>
<td>Non Phase Sensing</td>
<td>Non Phase Sensing</td>
<td>After 10 module trips</td>
<td>Non Phase Sensing</td>
</tr>
<tr>
<td>Reset for Lockout</td>
<td>Non Phase Sensing</td>
<td>Non Phase Sensing</td>
<td>T1-T2 interrupt for minimum of 5 sec</td>
<td>Non Phase Sensing</td>
</tr>
</tbody>
</table>
Table 8 - Compressor Oil Charge

<table>
<thead>
<tr>
<th>Model</th>
<th>Initial</th>
<th>Recharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZB50</td>
<td>85</td>
<td>81</td>
</tr>
<tr>
<td>ZB58</td>
<td>85</td>
<td>81</td>
</tr>
<tr>
<td>ZB66</td>
<td>114</td>
<td>110</td>
</tr>
<tr>
<td>ZB76</td>
<td>114</td>
<td>110</td>
</tr>
<tr>
<td>ZB88</td>
<td>114</td>
<td>110</td>
</tr>
<tr>
<td>ZB95</td>
<td>114</td>
<td>110</td>
</tr>
<tr>
<td>ZB114</td>
<td>140</td>
<td>137</td>
</tr>
<tr>
<td>ZB56</td>
<td>140</td>
<td>137</td>
</tr>
<tr>
<td>ZB68</td>
<td>140</td>
<td>137</td>
</tr>
<tr>
<td>ZB75</td>
<td>140</td>
<td>137</td>
</tr>
<tr>
<td>ZB92</td>
<td>140</td>
<td>137</td>
</tr>
<tr>
<td>ZB11M</td>
<td>140</td>
<td>137</td>
</tr>
</tbody>
</table>

Table 9 - Connection Fittings

<table>
<thead>
<tr>
<th>Model</th>
<th>Rotolock Spud Connection</th>
<th>Stub Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Suction</td>
<td>Discharge</td>
</tr>
<tr>
<td>ZB50</td>
<td>1-3/4 - 12</td>
<td>1-1/4 - 12</td>
</tr>
<tr>
<td>ZB58</td>
<td>1-3/4 - 12</td>
<td>1-1/4 - 12</td>
</tr>
<tr>
<td>ZB66</td>
<td>1-3/4 - 12</td>
<td>1-1/4 - 12</td>
</tr>
<tr>
<td>ZB76</td>
<td>1-3/4 - 12</td>
<td>1-1/4 - 12</td>
</tr>
<tr>
<td>ZB88</td>
<td>1-3/4 - 12</td>
<td>1-1/4 - 12</td>
</tr>
<tr>
<td>ZB95</td>
<td>1-3/4 - 12</td>
<td>1-1/4 - 12</td>
</tr>
<tr>
<td>ZB114</td>
<td>1-3/4 - 12</td>
<td>1-1/4 - 12</td>
</tr>
<tr>
<td>ZB56</td>
<td>1-3/4 - 12</td>
<td>1-1/4 - 12</td>
</tr>
<tr>
<td>ZB68</td>
<td>1-3/4 - 12</td>
<td>1-1/4 - 12</td>
</tr>
<tr>
<td>ZB75</td>
<td>1-3/4 - 12</td>
<td>1-1/4 - 12</td>
</tr>
<tr>
<td>ZB92</td>
<td>1-3/4 - 12</td>
<td>1-1/4 - 12</td>
</tr>
<tr>
<td>ZB11M</td>
<td>2-1/4 - 12</td>
<td>1-3/4 - 12</td>
</tr>
</tbody>
</table>

The contents of this publication are presented for informational purposes only and are not to be construed as warranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability. Emerson Climate Technologies, Inc. and/or its affiliates (collectively "Emerson"), as applicable, reserve the right to modify the design or specifications of such products at any time without notice. Emerson does not assume responsibility for the selection, use or maintenance of any product. Responsibility for proper selection, use and maintenance of any Emerson product remains solely with the purchaser or end user.
APPENDIX A

Kriwan to CoreSense™ Communications Retrofit Instructions for ZB95-114KC, ZR160-190KC & ZP154-182K Compressors

Kriwan has discontinued production of the INT69 SU2® motor protector module that has been used with 13 & 15 ton ZB*KC, ZR*KC, ZP*KC and ZPD*KC Copeland Scroll™ compressors. Kriwan modules that require replacement in field applications should be replaced with a CoreSense™ Communications module. Please refer to the Kriwan, CoreSense, and compressor model numbers listed in the table below.

Kriwan modules that are deemed non-operational and in-warranty should be returned through the normal channel for warranty purposes. Kriwan modules that are non-operational and out of warranty should be field scrapped in the appropriate manner.

If you have any questions, please contact your Emerson Climate Application Engineer or visit Emerson’s Online Product Information (OPI) located at Emerson.com/OPI.

Replacing Kriwan Module with CoreSense™ Communications

1. Disconnect and lock-out the power to the unit.

2. Using a straight blade screwdriver, carefully depress the tabs holding the terminal cover to the terminal box to remove the terminal cover. Before proceeding, use a volt meter to verify that the power has been disconnected from the unit.

3. Verify the Kriwan module part number matches one of those shown in the table below.

4. Using wire markers, label the M1, M2, T1, and T2 wires that are connected to the Kriwan module.

5. Using needle nose pliers, remove the M1, M2, T1, T2, S1 and S2 wires from the Kriwan motor protection module.

Using needle nose pliers, remove the M1, M2, T1, T2, S1 and S2 wires from the Kriwan motor protection module.

Figure 12 - Holding Tabs Position

<table>
<thead>
<tr>
<th>Kriwan Module Part Number</th>
<th>Replacement CoreSense Kit Number</th>
<th>Module Voltage</th>
<th>Compressor Model Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>071-0641-01/071-0660-01</td>
<td>971-0065-04</td>
<td>24 VAC</td>
<td>ZR160-190KCE-TW*</td>
</tr>
<tr>
<td>071-0641-00/071-0660-00</td>
<td>971-0064-05</td>
<td>120/240 VAC</td>
<td>ZP154-182KCE-TW*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ZB95-114KCE-TW*</td>
</tr>
</tbody>
</table>
6. Using your fingers, gently pry the S1-S2 connector block from the compressor.

7. A new S1-S2 wiring harness is shipped with the CoreSense module. The wiring harness connector block should be fully inserted on the two pins.

8. Review the dip switch settings on the CoreSense module. Dip switch #1 should be “on” or in the “up” position. All other dip switches should be in the “off” or “down” position.

9. Route the S1-S2 wire harness so the end of the harness will not be covered by the module when it is installed. Install the CoreSense module in the reverse manner that the Kriwan module was removed. The module should be installed as illustrated below.

10. Plug the S1-S2 harness into the 2x2 socket on the CoreSense module.

11. Connect the previously labeled M1, M2, T1, and T2 wires to the appropriate terminals on the CoreSense module.

12. Connect the L1, L2, and L3 phase sensing wires to the L1, L2, and L3 compressor terminal block connections. See the compressor terminal cover wiring diagram for identification of the L1, L2, and L3 connections on the compressor terminal block.

13. Double check the installation and make sure all connections are secure. Install the compressor terminal cover.

14. The module change is complete and the system can be put back into service.